Exit

Tag Archive: CNC Machining

  1. What is Precision Machining?

    Leave a Comment

     

    Precision machining has become essential to the manufacturing sector. This subtractive manufacturing process often pairs expert designers and engineers with the most advanced equipment available to create parts and components with extremely intricate or complex geometries. Precision machining is essential for the creation of many critical parts used in numerous industries, including the aerospace, electronics, and medical device machining industries.

    Request a Quote

    Methods of Precision Machining

    Precision machining relies on the use of advanced, computerized machine tools to achieve demanding tolerances and create complex geometric cuts with a high degree of repeatability and accuracy. This can be achieved through the use of automated computer numerical control (CNC) machine tools.

    CNC Machining

    Demonstration of Precision Machining via CNC MachineDesigners create digital design files using computer-aided design (CAD) software, which is then translated into a computer-aided manufacturing (CAM) file that gives instructions to the CNC machining equipment about which tools and processes to use. CNC mills and CNC lathes are the most common types of automated machine tools, though state-of-the-art CNC machining centers can often perform the functions of both. Tasks performed during CNC machining could include milling, , turning, drilling, tapping, boring, and more.

    Multi-Axis CNC Machining

    The machine tools typically used for high-precision CNC machining have what is known as multi-axis capabilities. With multi-axis machining, processes can be performed simultaneously and save substantial setup time, leaving less room for human error that may occur during part repositioning.

    Most standard CNC tools work on at least 3 axes, allowing work on the X, Y, and Z linear axes at the same time. Multi axis precision machining, however, typically relies on 4 to 5-axis machining for its efficiency and superior capabilities. With the addition of the A/C and B axes, 4 to 5-axis CNC machining offers greater precision and detail and can access the workpiece from virtually any direction.

    Generally, 4 to 5-axis machines are the bare minimum for precision machining. Multi-axis machines are available with up to 9 axes of motion, providing the ultimate in precision machining. Multi-axis CNC machining is frequently used for medical CNC machining as well as aerospace, automotive parts and components for power generation.

    Swiss Machining

    Swiss machining is a specific type of CNC machining which creates parts by bringing the stock to the tool rather than the other way around. They provide a great degree of precision among the various types of CNC machining. Extremely accurate Swiss machining can achieve tolerances within ±0.0001 inches.

    Once tooling is set up, Swiss machine tools can often run unattended for long periods of time, facilitating greater production volumes with less required labor. The superior precision of Swiss machining is extremely well-suited to producing components and parts for robotics, custom pins, surgical tools, aerospace, custom ferrules, electronics, and precision tooling, among others.

    Learn More About the Advantages of Swiss Machining

    Applications of Precision Machining

    Precision CNC MachinePrecision machining produces parts to a much more exacting standard than baseline CNC machining. It is an excellent solution to meet stringent project requirements, such as:

    • Tight tolerances. With the right equipment available, precision machining can produce parts with tolerances as small as ±0.0001″.
    • Repeatability. Successful precision machining means that parts must be able to be machined to the same tight tolerances repeatably from part to part.
    • Volume. Precision machining practices can handle virtually any production volume requirement ranging from prototypes to high-volume production runs and blanket orders.

    Suitable Materials for Precision Machining

    Precision machining produces high-quality, exacting parts from a wide variety of materials. Frequent materials used for precision machining include:

    • Aluminum
    • Brass
    • Bronze
    • Carbon steel
    • Copper
    • Plastics
    • Stainless steel
    • Steel
    • Titanium
    • Tool steel
    • Exotic alloys

    Precision Machining From McCormick Industries

    At McCormick Industries, we specialize in precision machining using our state-of-the-art equipment. Our expertise and experience leave us especially well-prepared to manufacture small and complex parts. Request a quote today to see how our precision machining capabilities can serve your project, or contact us with any questions you may have.

  2. Types of Precision CNC Machining

    Leave a Comment

    Close on swiss precision machine turning metal part
    Using computer numerical control (CNC) technology, precision CNC machining removes excess raw material from a workpiece to create a functional finished product. CNC machining services are necessary to create precision machined components for nearly every industry, including automotive, aerospace, medical, and electronics.

    To determine which service is right for you, learn more about the five main types of CNC machining.

    What are the Different Types of Precision CNC Machining?

    Click to Expand

    Types of Precision CNC Machining infographic

    Different machines perform different types of CNC precision machining. But every CNC machine can be programmed to achieve specialized features and tight tolerances that are not possible through conventional machining.

    CNC Lathes and Turning Machines

    CNC lathes and turning machines rotate the workpiece while the cutting tool removes material around the outer diameter to produce the desired component. A CNC Swiss lathe is a type of CNC lathe whereby a guide bushing holds the material as it rotates and slides into the machine. Swiss lathes provide added support and produce tighter tolerances.

    CNC Milling Machines

    Unlike lathes, CNC milling machines hold the workpiece in place while the cutting tools rotate. As a result, milling can produce more complex shapes and features, such as shallow cavities, slots, and threads.

    CNC Laser Machines

    CNC laser machines use a highly precise laser beam to cut or engrave sheet material. To make cuts, the laser’s heat melts or vaporizes excess material. CNC lasers can create more complex designs than lathes or mills and produce edges that do not require finishing. This method is often used to decorate or brand finished components.

    CNC Electrical Discharge Machines (EDM)

    A CNC electric discharge machine (EDM) uses electricity to change materials into specific shapes. The electrode wire can produce focused heat at nearly 11,650 °C to melt away material from a workpiece, which is flushed with liquid to create the desired product. EDM is best for creating small, precise holes, tapers, slots, and angles in very hard metals.

    CNC Plasma Cutting Machines

    CNC plasma cutting machines use a powerful plasma torch to cut and shape workpieces. The torch can produce heat up to 27,760 °C to melt away excess material. The only limitation to this method is that the workpiece must be electrically conductive, which includes the metals aluminum, brass, copper, steel, and stainless steel.

    Precision CNC Machining by McCormick Industries

    Before starting your CNC machining project, consider the required features, tolerances, materials, and performance of the finished components. McCormick Industries is a leading provider of precision CNC machining services including CNC swiss-style machining and CNC milling for small parts. We have delivered tailor-made CNC machining solutions to businesses throughout the industrial, aerospace, defense, and medical fields. Contact us to learn more or request a quote today.